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Dispersion Characteristics of Twisted
Rectangular Waveguides

HATSUO YABE, MEMBER, IEEE, KAZUNORI NISHIO, AND YASUTO MUSHIAKE, FELLOW, IEEE

Abstract —Based on the expressions for the dominant hybrid-mode
fields in twisted rectangular waveguides, dispersion formulas with two
perturbational factors have been derived theoretically. These factors corre-
spond to the two effects of the twist on the dominant wave propagation,
respectively. The one expresses a shift in the cutoff frequency while the
other expresses the effect of elongation in the transmission path.

A set of 20-cm-long waveguides twisted uniformly by various multiples of
90° has been manufactured by the method of electroforming, The resonant
frequencies of the respective waveguides have been measured as a trans-
mission cavity in the 10-GHz band to obtain dispersion relations. Experi-
mental results are found to be in good agreement with the theoretically
derived formulas. The results of Lewin’s theory are also compared with the
present ones.

I. INTRODUCTION

THEORETICAL analysis of propagation constants

in twisted rectangular waveguides has already been
introduced by Lewin [1]. In the course of Lewin’s work,
electromagnetic fields in the waveguide have been assumed
to be of the TE-mode type whose electric field lies entirely
on the plane perpendicular to the guide axis. On the other
hand, the present authors have investigated thoroughly this
boundary value problem, and have derived the hybrid-mode
fields that exactly satisfy the boundary conditions on the
guide walls in helicoidal shape [2].

The purpose of this study is to provide some basic data
for designing an optimum waveguide twist which has an
allowable reflection coefficient with minimum length for
the required bandwidth.

The present paper is concerned with the argument on the
hybrid-mode fields and it starts from the relations of
stored energies in this mode. Formulas for the dispersion
relations of the twisted waveguide are given in the same
form as those for a straight one, except for two perturba-
tional factors. The effects of the twist on the formulas can
be interpreted intuitively through these factors.

The results of experimental investigations are also pre-
sented in this paper. A set of waveguides with various twist
angles is employed for the experiments to prove the theo-
retical formulas. By paying special attention to the cross-
sectional geometries of tested waveguides, an alternative
method is proposed for evaluating the cross-sectional di-
mensions. Results of the resonant frequency measurements
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in the 10-GHz band are shown to be in good agreement
with the predictions by the present theory.

Detailed comparisons of Lewin’s theory with the present
ones are made, and the discrepancies between these two are
clarified.

II. THEORETICAL FORMULATIONS

A. Determination of Phase Constants

In a preceding paper [2], the present authors derived the
expressions of dominant hybrid-mode fields in uniformly
twisted rectangular waveguides with perfectly conducting
walls. For a propagating mode in such structures, it is well
known that the time-average electric and magnetic energies
associated with a specific mode are equal [3].

Applying the energy relation to our problem, we obtain

ffsrotE-rotE*dS=ka/;E-E*dS (1)

where S =ab denotes the cross section of the twisted
waveguide, a the width, b the height, and & the free-space
wavenumber. The covariant components (E, E,, E;) of
the electric field vector E in twisted coordinates (X, Y, Z)
have been found [2] to be

E,=a®Pexp(— jBrZ)
E,= (<IJ,§°) +a®V ) exp(— jB,Z)
By = 0P exp(~ 8, 2) @)

in which the twist constant « (rad/m) is assumed to be
small. Since the twisted coordinate system, as well as the
procedure for deriving the hybrid-mode fields, have al-
ready been described in detail in the previous paper [2],
only the expressions of the scalar functions @, &, M,
and ©f" will be given in the Appendix.

The perturbed phase constant S8, of the hybrid-mode
may be written as

2
K2 =B =25 (1 Ay + ) (3)
where 7/a is the unperturbed eigenvalue of the TE,-mode,
and A4, is a constant to be determined. Here we assume
that this expression is valid in the second-order approxima-
tion with respect to a.
Substitution of (2) and (3) into (1) gives (see Appendix)
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in which
(o) 842 g o2 128 tang 256
A2(¢)—3<1> 6—7t+ = e
©  (m2+1)’tanh(¢vVm?—1)
> 5 (5a)
m=2,4, - (Vm?-1)
, 4 , 128 tang 256
()= =3 H6Fat - — -

(3m?2+1) tanh(qme2 -1 )
(Vm?-1)’

where ¢ = wb/2a, and b/a is referred to as the waveguide
aspect ratio.

(5b)

m=2.4,---

B. Dispersion Formulas

Upon introducing (4) into (3), we obtain various disper-
sion formulas for twisted rectangular waveguides as fol-
lows:

2 2
Elliptic relation; rlf ( %) ;1;5 ( >\_>\7:) =1 (6a)
Guide wavelength; A, = A - (6b)
Phase constant; Br= rz\/( zz—f)z - (rlla )2 (6¢)
Cutoff frequency;  f.p= ﬁ = {—z (6d)

where A is the free-space wavelength, ¢ is the velocity of
light, and f, is the cutoff frequency in the straight wave-
guide with the same cross section. Further, 7, and r, in
(6a)—(6d) are given as follows:

o |1 i(s)@
1 1+ 45(¢)a?
n=y1-45(¢)& (70)

where @ = aa /27 denotes the degree of twist as a dimen-
sionless quantity.

The newly defined factors r, and r, play a very im-
portant role in the dispersion relations. If the degree of
twist @ is equal to zero, both of them become unity,
respectively, and the formulas (6a)-(6d) are then reduced
to those for well-known straight waveguides. The effects of
the twist on the values of r; and r, are presented graphi-
cally in Fig. 1.

In order to give a better interpretation to r; and r,, we
rewrite the formula (6¢) as

sez=na (2] - ()

Hence, we can recognize the role of r; and #, as multiplying

(7a)

(8)
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Fig. 1. Plot of the factors », and r, versus the degree of twist @ = aa /27

with the waveguide aspect ratio b /a as a parameter.
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Fig. 2. The effects of the twist on various expressions for the dispersion
characteristics. (a) A /Ay versus A /2a. (b) A versus f. (¢) Br versus f.
Dispersion relations for a TEM wave are also shown for comparison.

factors to a and Z, respectively. Thereupon, the concepts of
equivalent guide width r,a and equivalent path length r,Z
can be introduced. Since r; decreases with increasing &, the
equivalent guide width is considered to be diminished by
twisting. On the other hand, r, increases by twisting and it
causes an elongation of the equivalent length of the trans-
mission path. This means that the wave propagates along a
helical path slightly deviated from the central axis of the
twisted waveguide.

The effects of the twist on the dispersion formulas
(6a)—(6¢) are illustrated in Fig. 2.

III. EXPERIMENTAL INVESTIGATION

A. Twisted Waveguides Under Test

The 20-cm-long specially made waveguides are shown in
Fig. 3, which are of standard cross section compatible with
WRIJ-10 (22.9 mm X 10.2 mm). The respective waveguides
are twisted uniformly with angles from 0° (straight) to



YABE et al..

DISPERSION CHARACTERISTICS OF WAVEGUIDES

D nin D max

Qmin

Gmax

Fig. 4. An exaggerated illustration of waveguide cross section.

TABLE1
DIMENSIONS OF SAMPLE WAVEGUIDES

Twist a (mm) b (mm) £ (mm)
angle max. min. max. min. average s.d.

0° 22.90 22.89 10.20 10.19 199.650 0.006

90° 22.90 22.86 10.21 10.15 200.110 0.007
180° 22.90 22.82 10.20 9.96 200.099 0.011
270° 22.90 22.76 | 10.20 9.73 200.136 0.013
360° 22,89 22.63 10.21 9.38 200.062 0.007
450° 22.89 22.51 10.22 9.05 200.130 0.005

540° 22,88 22.44 10.21 .44 200.143

©
o

.005

540° at 90° intervals. These seven samples have been
manufactured by the method of electroforming, using
aluminum formers as the disposable cores. The formers
have been manufactured by using a digital machining
system to keep their specified cross-sectional dimensions
constant throughout the length of the structures.
Dimensional inspections of the aluminum formers for
the respective twisted waveguides were carried out by a
three-dimensional measuring machine equipped with data
processors. It was found that the larger the degree of twist,
the more the deformation in cross-sectional geometries of
the respective structures. Fig. 4 shows an exaggerated
illustration of the deformed cross section in a typical case.
The irregularities in the cross-sectional dimension along
axial lengths were found to be within +5 pm, which may
be considered negligible as compared with the systematic
deformation. Dimensions of the sample waveguides are
listed in Table I, where the meanings of the maximum and
minimum values of a and b are explained in Fig. 4. The
thickness of the 7-um silver plating is ignored there. The
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Fig. 6. Plot of f? versus »7 and the least-square regression lines, where fi
denotes the observed resonant frequency and »; the number of half-guide
" wavelengths.

respective axial lengths / are shown in terms of the average
values and standard deviations for repeated measurements.

B. Resonant Frequency Measurement

Let us now consider the case where a twisted waveguide
of axial length / constitutes a resonant cavity. Then, the
resonant guide wavelength A;; can be expressed as

}\Ti=y'

4]

©)

where »; is an integer corresponding to the number of
half-guide wavelengths. Substitution of (9) into (6a) or (6b)

gives
2 ‘ 2
2_|_¢ 2 ¢
J (21r2) vi +(2ar1) (10)

where f, is a resonant frequency in »;th order Equation (10)
gives a linear relationship between f; 2 and »2, which is to be
corroborated experimentally.

Resonant frequencies of the respective waveguides were
then measured by a transmission cavity method [4] as
shown in Fig. 5. The equivalent electrical lengths of the
coupling irises at both ends were carefully considered, and
their effects in the order of 0.1 percent were corrected by
using the measured data for a straight waveguide. The
resonant frequencies ranging from 6714.5 MHz to 12375.2
MHz corresponding to »,=2 to 14 were observed in the
respective waveguides.

Fig. 6 shows the plot of the measured values of f2 versus
v? together with the least-square regression lines, in which
only three typical examples are plotted to illustrate the
linear relationship predicted by the theory.
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C. Evaluation of Waveguide Cross-Sectional Dimensions

Further investigation on the perturbational factors r
and r, introduced in the theoretical dispersion formulas
will be made here. Calculation of these factors directly
from (7a) and (7b) necessitates the value of ¢, and, hence,
the value of waveguide aspect ratio b/a. The cross-sec-
tional dimensions of the sample waveguides, however, have
appreciable deviations from the specified values as listed in
Table I. Therefore, the ratios b/a have an ambiguity due to
the maximum and minimum values of a and b, especially
for the waveguides with twist angles of 270° or larger.
Thus, instead of simply adopting the measured dimensions,
we now present an alternative method for evaluating the
cross-sectional dimensions as follows. Considering the re-
sults obtained from the resonant frequency measurements,
we rewrite the formula (10) in the form

fi=pri+q (11)
where p and g can be determined from the least-square
regression lines in Fig. 6. On the other hand, substitution
of (7a) and (7b) into (10) and comparison with (11) yield
- the following simultaneous equations for ¢ and a:

— (<Y 1 - (12a)
()

2 5(
S Sl IR

1-a500)(32)°

Elimination of a from these equations gives a transcenden-
tal equation as shown as follows:

al\2 g ¢
—1-45 (-—) +4 -1]=0.
R e ] Tt
(13)
Since p and ¢q are already known, the value of ¢ can be
determined as a solution of this equation, if we use the
measured values of / and a.

When ¢ is evaluated, the values of a, and, hence, b, can
then be determined as follows:

a= ! (14a)
V- aw (5]
b= 20! (14b)

V——A(w( Ly

in which @ can be evaluated even when a= 0, but ¢ and b
become indeterminable when a = 0. Hence, it follows that
the values of ¢ and b depend critically on the measured
values of p, ¢, and I for slightly twisted samples. This
means, in other words, that the method for evaluating the
cross-sectional dimensions proposed here is effective rather
for rapidly twisted samples.
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Fig. 7. Evaluated cross-sectional dimensions of the sample waveguides.
Ranges of the physical dimensions a and b are also shown for comparison.

The value of a and b evaluated from (14a) and (14b) are
to be compared with their physical dimensions in Table I.
The results will be discussed in the following section.

IV. RESULTS AND DISCUSSIONS

The expression of the guide wavelength derived by Lewin
[1, p. 79, eq. (44)] can be rearranged in comparison with
the relation (3) in Section II-A, and the expressions corre-
sponding to (5a) and (5b) are given as follows:

O L
i (2m? +1) tanh (¢y/m> - 1)
m=2,4,- (Vm*-1)’
(152)
A’z’L(¢)=—§¢2+6+w2—1—W22§-%‘—9—%
5 (2m? +1) tanh (¢Vm>—1)
m=2,4, (Vm2-1)°
(15b)

where subscript L denotes the Lewin’s theory. The results
of the present theory are derived from the dominant
hybrid-mode fields, while those of the Lewin’s theory are
from the dominant TE-mode fields. The differences be-
tween them are mainly seen in the terms under the sign of
summation.

The values of b/a, a, and b obtained, respectively, from
(13), (14a), and (14b) are shown in Fig. 7 in comparison
with those from Lewin’s theory. The ranges of the physical
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Fig. 8. Plot of the relative increment of the cutoff frequency versus
square of the degree of twist.

dimensions for a and b listed in Table I are also indicated
by vertical bars. Each value of a-and b evaluated from the
present theory agrees well with the respective dimensions
within the range of variations. But, on the contrary, all of
the values from Lewin’s theory are out of the ranges in
Fig. 7.

By employing the value of b/a and a evaluated from the
present theory, the dispersion characteristics of the respec-
tive waveguides can be expressed numerically by introduc-
ing them into the formulas (6a)-(6d). As an example, a
relative increment in the cutoff frequency plotied versus
square of the degree of twist is shown in Fig. 8. The solid
line indicates the results of the present theory calculated
from (6d) together with (5). The dotted line indicates the
Lewin’s theory calculated from (6d) together with (15)
instead of (5). Both results are obtained by introducing the
same value of ¢ evaluated from the present theory for the
respective samples. Discrepancies between these two are
solely caused by the differences between (5) and (15).

V. CONCLUSIONS

The dispersion formulas (6a)—(6d) for the twisted rectan-
gular waveguides have been obtained on the basis of the
energy relation in the dominant hybrid-mode fields. By
examining the two perturbational factors in the formulas,
the concepts of equivalent guide width and equivalent path
length have been derived. It is found that the effects of the
twist are equivalent to the contraction in the guide width
and the elongation in the path length. As a result, the
cutoff frequency becomes higher with the increasing angle
of the twisting. Hence, the guide wavelength increases in
the low-frequency region near cutoff. But, in higher fre-
quencies far beyond cutoff, it decreases and becomes
shorter than that of the straight waveguide. The effects of
the twist are explained more intuitively with the aid of the
diagrams as shown in Fig. 2.

By using a set of twisted waveguides, experimental inves-
tigations have been carried out to corroborate the theoreti-
cal dispersion formulas. Equations (13), (14a), and (14b)
have been derived as useful relations for evaluating the
cross-sectional dimensions of the twisted waveguides. Com-
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parison of the evaluated dimensions with their physical
ones reveals that the results of the present theory are more
realistic than those of the Lewin’s theory.-

The strict expressions of the phase constants obtained in
this paper can be utilized for the design of practical
waveguide twists,

APPENDIX
DERIVATION OF (4)

By substituting (2) into (1), the integrands in each side of
(1) can be expressed as

o0 | 2
rotE-rotE*=) a)"( + B0
b 2 1 2 b 2
e Gl LA oV |
ay ax X
1) 2 0 |2 © (2
N oo e 09 26’<I>,,)
Yy X X

JOL  JBM
X oY

+ 83 ([o [ +[op[ ) +2

FLICIIET ISR T TORNFT YO

Wy Ty X ax Tax
. god Jo
+J2:3r[q’1§1) ¥ + oW X + Y0
1 1 0) (@]
) 9%;" _ 99" _yq)a)i??ii_x@mﬂ
ED's Y T 3X - £ 9x |
1 2 W |2 (1) a
(X 4T 0 L 2P JoP
‘ ay X Y 0X
£-et-fo]
2 2 2
+ ([0 + o0+ o |
2
+X2]<I),§°>| ~2XcI>,§°><I>§1))
2 2
+at( Y7o + xjo®| +2 X700 (A1)

in which the terms of a and & are found to vanish.
The scalar functions of the form ®© and ®® have been
found [2] to be

O =sing
Bya? i

R (0—g)cosﬂ—sin0+i Y M
m Tm=02,--- (m*—1)

cosh [@/ﬁ(%zp —1)]
. cosh(qb\/m)




96 1EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 1, JANUARY 1984

B,a* | b 7 7 16 ¢
™ — o=y —=)si —
R TGRS 1| LAk EL -
: (2, ]
__msinmf .smh[qu(wz[/ 1)}
Ym*-1)’ cosh(¢v/m? 1)
o_a AW 8 al msin mé
)] - (0 2)51n0+ ngi ,——(m2—1)2
13
cosh|¢pVm —1(—¢—1)
7 (A2)
cosh(qb mz—l)
where

b 2
_ b (1 (form=0)
T2 "7\ 2 (form=#0)

On substituting (A2) and (3) into (A1), each integrand in
(Al) is expressed in terms of the variables X, Y, and the
unknown constant A4,, together with the remaining con-
stants. After integrating (1) and neglecting the terms of a*,
we get (4) of the text.

ACKNOWLEDGMENT

The help and encouragement of Prof. T. Arakawa and
Prof. S. Tijima at the University of Electro-Communica-
tions is gratefully acknowledged. Thanks are also due to
the engineering staff of Simada Physical & Chemical IND.
for manufacturing the twisted sample waveguides.

REFERENCES

[1] L. Lewin, “Propagation in curved and twisted waveguides of rectan-
gular cross-section,” Proc. Inst. Elec. Eng., vol. 102, B, 1, pp. 75~80,
1955.

[2] H. Yabe and Y. Mushiake, “An analysis of a hybrid-mode in a
twisted rectangular waveguide,” IEEE Trans. Microwave Theory
Tech., vol. MTT-32, pp. 65-71, Jan. 1984.

[3] Y. Garault, “Hybrid EH guided waves,” in Advances in Microwaves,
vol. 5, L. Young, Ed. New York: Academic, 1970, pp. 203-211.

[4] H. M. Altschuler, “Attenuation and phase constants,” in Handbook
of Microwave Measurements, vol. 1, M. Sucher and J. Fox, Eds., 3rd
ed. New York: Polytechnic Press of the Polytechnic Inst. of Brook-
lyn, 1963, pp. 373-375.

Hatsuo Yabe (M’71) was born in Saitama, Japan,
on February 5, 1937. He received the B.S. degree
in communication engineering from the Univer-
sity of Electro-Communications, Tokyo, in 1960.

From 1963 to 1969, he was a Research Assis-
tant with the Department of Communication En-
gineering at the same university. From 1971 to
1972, he studied electromagnetic field problems
(mainly related to oversized waveguides) at the
Department of FElectrical Communications,
Tohoku University, Sendai, as a research associ-
ate member supported by the Ministry of Education in Japan. Since 1972,
he has been engaged continuously in research on the problems of twisted
waveguides He is presently an Associate Professor in the Department of
Junior Technical College, the Umversny of Electro—Comrnumcanons
Chofu-shi, Tokyo, Japan.

o

Kazunori Nishio was born in Hokkaidd, Japan,
on November 12, 1946. He received the B.S.
degree in communication engineering from the
Umvers1ty of Electro-Communications, Tokyo,
in 1969.

From 1969 to 1972, he was a Research Associ-
ate with the Department of Communication En-
gineering at the same university. He has been
engaged in research of microwave transmission
lines- and microwave measurement techniques.
He is now a Research Associate in the Depart-
ment of Junior Technical Collcge, the University of Electro-Communica-
tions.

*

Yasuto Mushiake (A’55-SM’60-F’76) was born
on March 28, 1921, in Okayama-Ken, Japan. He
received the B.S.EE. and D.Eng, degrees from
Tohoku University., Sendai, Japan in 1944 and
1954, respectively.

From 1949 to 1960, he was an A551stant Pro-
fessor at Tohoku University, and from 1954 to
1956, he was'a Visiting Research Associate in the
Antenna Laboratory of Ohio State’ University,
Columbus. Since 1960, he has been a Professor of
Electrical Communication Engineering at Tohoku
Umversny, and from April 1980 to March 1981, he was a Member of
Council at the same university. He also is associated with several commit-
tees related to radio technics in the Japahese Government. His research
has been concerned mainly with antennas, such as slot antennas and
linear antennas, and he originated the self-complementary antennas that
have constant input impedance. His research fields also include wave
propagation, electromagnetic wave theory, microwave transmission cir-
cuits, and optical wave transmission. He is the author or coauthor of a
number of papers and several books, including a book entitled Yagi-Uda
Antenna. He has received several awards from the Institute of Electrical
Engineers of Japan and other academic institutes in the field of antenna
engineering.

Dr. Mushiake served as the Organizer and the Chairman of the IEEE
Antennas and Propagation Society, Tokyo Chapter, and he also served as
the Chairman of the Organizing Committee and the Executive Committee
of the 1978 International Symposium on Antennas and Propagation,
Japan. He is a member of the Institute of Electronics and Communication
Engineers of Japan, where he was Vice President from 1976 to 1978. He is
a Life Member of the Institute of Electrical Engineers of Japan, and a
member of the Institute of Television Engineers of Japan.




