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Dispersion Characteristics of Twisted
Rectangular Waveguides

HATSUO YABE, MEMBER, IEEE, KAZUNORI NISHIO, AND YASUTO MUSHIAKE, FELLOW, IEEE

Abstract —Based on the expressions for the dominant hybrid-mode
fields in twisted rectangular wavegnides, dispersion formulas with two
perturbational factors have been derived theoretically. These factors corre-
spond to the two effects of the twist on the dominant wave propagation,
respectively. The one expresses a sfdft in the cutoff frequency while the

other expresses the effeet of elongation in the transmission path.
A set of 20-cm-long wavegnides twisted uniformly by various multiples of

90” has been manufactured by the method of electroforming. The resonant

frequencies of the respective wavegnides have been measured as a trans-

mission cavity in the 10-GHz band to obtain dispersion relations, Experi-
mental results are found to be in good agreement with the theoretically

derived formulas. The resnfts of Lewin’s theo~ are afso compared with the
present ones.

I. INTRODUCTION

A THEORETICAL analysis of propagation constants

in twisted rectangular waveguides has already been

introduced by Lewin [1]. In the course of Lewin’s work,

electromagnetic fields in the waveguide have been assumed

to be of the TE-mode type whose electric field lies entirely

on the plane perpendicular to the guide axis. On the other

hand, the present authors have investigated thoroughly this

boundary value problem, and have derived the hybrid-mode

fields that exactly satisfy the boundary conditions on the

guide walls in helicoidal shape [2].

The purpose of this study is to provide some basic data

for designing an optimum waveguide twist which has an

allowable reflection coefficient with minimum length for

the required bandwidth.

The present paper is concerned with the argument on the

hybrid-mode fields and it starts from the relations of

stored energies in this mode. Formulas for the dispersion

relations of the twisted waveguide are given in the same

form as those for a straight one, except for two perturba-

tional factors. The effects of the twist on the formulas can

be interpreted intuitively through these factors.

The results of experimental investigations are also pre-

sented in this paper. A set of waveguides with various twist

angles is employed for the experiments to prove the theo-

retical formulas. By paying special attention to the cross-

sectional geometries of tested waveguides, an alternative

method is proposed for evaluating the crosssectional di-

mensions. Results of the resonant frequency measurements
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in the 1O-GHZ band are shown to be in good agreement

with the predictions by the present theory.

Detailed comparisons of Lewin’s theory with the present

ones are made, and the discrepancies between these two are

clarified.

II. THEORETICAL FORMULATIONS

A. Determination of Phase Constants

In a preceding paper [2], the present authors derived the

expressions of dominant hybrid-mode fields in uniformly

twisted rectangular waveguides with perfectly conducting

walls. For a propagating mode in such structures, it is well

known that the time-average eleetric and magnetic energies

associated with a specific mode are equal [3].

Applying the energy relation to our problem, we obtain

JJ
rot E.rot E*dS=k2

J.1
E.E*dS (1)

s s
where S = ab denotes the cross section of the twisted

waveguide, a the width, b the height, and k the free-space

wavenumber. The covariant components (Et, Illv, E<) of

the electric field vector E in twisted coordinates (X, Y, Z)

have been found [2] to be

E$ = d?}) exp ( – j/3~Z)

E,= (Or) + C@:)) exp ( – j3~Z)

E{= a~~)exp ( – #TZ) (2)

in which the twist constant a (rad/m) is asstimed to be

small. Since the twisted coordinate system, as well as the

procedure for deriving the hybrid-mode fields, have al-

ready been described in detail in the previous paper [2],

only the expressions of the scalar functions @~O),Or), Of),

and @~) will be given in the Appendix.

The perturbed phase constant &- of the hybrid-mode

may be written as

k2–/3~= ~(l+A2a2 +”””) (3)

where ~/a is the unperturbed eigenvalue of the TElo-mode,

and Az is a constant to be determined. Here we assume

that this expression is valid in the second-order approxima-

tion with respect to a.

Substitution of (2) and (3) into (1) gives (see Appendix)
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in which

where @= zb/2a, and b/a is referred to as the waveguide

aspect ratio.

B. Dispersion Formulas

Upon introducing (4) into (3), we obtain various disper-

sion formulas for twisted rectangular waveguides as fol-

lows:

Elliptic relation;

Guide wavelength;

Phase constant;

Cutoff frequency;

where A is the free-space wavelength, c is the velocity of

light, and f, is the cutoff frequency in the straight wave-

guide with the same cross section. Further, rl and r2 in

(6a)-(6d) are given as follows:

(7a)

~r2= l–A2(@)ti (7b)

where ii= aa/2n denotes the degree of twist as a dimen-

sionless quantity.

The newly defined factors rl and rz play a very im-

portant role in the dispersion relations. If the degree of

twist @ is equal to zero, both of them become unity,

respectively, and the formulas (6a)–(6d) are then reduced

to those for well-known straight waveguides. The effects of

the twist on the values of rl and r2 are presented graphi-

cally in Fig. 1.
In order to give a better interpretation to rl and r2, we

rewrite the formula (6c) as

&z=r2z/(~~-(fi~ ‘8)

Hence, we can recognize the role of rl and r2 as multiplying

Fig. 1.
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Fig. 2. The effects of the twist on various expressions for the dispersion
characteristics. (a) A/A~ versus L/2a. (b) AT versus ~. (c) & versus ~.
Dispersion relations for a TEM wave are also shown for comparison.

factors to a and Z, respectively. Thereupon, the concepts of

equivalent guide width rla and equivalent path length r2Z

can be introduced. Since rl decreases with increasing ii, the

equivalent guide width is considered to be diminished by

twisting. On the other hand, r2 increases by twisting and it

causes an elongation of the equivalent length of the trans-

mission path. This means that the wave propagates along a

helical path slightly deviated from the central axis of the

twisted waveguide.

The effects of the twist on the dispersion formulas

(6a)-(6c) are illustrated in Fig. 2.

III. EXPERIMENTAL INVESTIGATION

A. Twisted Waveguides Under Test

The 20-cm-long specially made waveguides are shown in

Fig. 3, which are of standard cross section compatible with

WRJ-10 (22.9 mm X 10.2 mm). The respective waveguides

are twisted uniformly with angles from 0° (straight) to



YABE et U1.: DISPERSION CHARACTERISTICS OF WAVEGUIDES 93

TWISTEDUAVEGUIDE .COUPLING IRIS

AS A TRANSMISSION CAVITY

t

B

0

ISOLATOR DETECTOR
t:+:

+t4

SWEEP SIGNAL T. 0:3T17!lN DIAMETER

O.1~ THICK
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frequencies by the transmission cavity method.
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Fig. 4. An exaggerated illustration of waveguide cross gection. Fig. 6. Plot of ~~ versus v? and the least-square regression lines, where A
denotes the observed resonant frequeney and vi the number of half-guide
wavelength.

TABLE I
DIMENSIONSOF SAMFLEWAVEGUIDES respective axial lengths 1 are shown in terms of the average

Twi St a (~) b (m@ ~ (~) values and standard deviations for repeated measurements.
angle ~ax . ~in . ~ax . ~in average S.a.

o“ 22.90 22.89 10.20 10.19 199.650 0.006
B. Resonant Frequency Measurement

90” 22.90 22. S6 10.21 10.15 200.110 0.007 Let us now consider the case where a twisted waveguide

1s0” 22.9a 22.82 10.20 9.96 200.099 0.011 of axial length 1 constitutes a resonant cavity. Then, the

270° 22.90 22.76 10.20 9.73 200.136 0.013 resonant guide wavelength &i can be expressed as

360° 22.89 22.63 10.21 9.38 200.062 0.007
ATi = : (9)

450” 22.89 22.51 10.22 9.05 200.130 0.005 1
540” 22.08 22.44 10.21 8.44 “200.143 0.005

where vi is an integer corresponding to the number of

half-guide wavelengths. Substitution of (9) into (6a) or (6b)

540° at 90° intervals. These seven samples have been gives

manufactured by the method of electroforming, using

aluminum formers as the disposable cores. The formers
fiz=(fir’’+(%r

(lo)

have been manufactured by using a digital machining

system to keep their specified cross-sectional dimensions where f is a resonant frequency in vith order. Equation (10)

constant throughout the length of the structures. gives a linear relationship between~2 and v:, which is to be

Dimensional inspections of the aluminum formers for corroborated experimentally.

the respective twisted waveguides were carried out by a Resonant frequencies of the respective waveguides were

three-dimensional measuring machine equipped with data then measured by a transmission cavity method [4] as

processors. It was found that the larger the degree of twist, shown in Fig. 5. The equivalen~c electrical lengths of the

the more the deformation in cross-sectional geometries of coupling irises at both ends were carefully considered, and

the respective structures. Fig. 4 shows an exaggerated their effects in the order of 0.1 percent were corrected by

illustration of the deformed cross section in a typical case. using the measured data for a straight waveguide. The

The irregularities in the cross-sectional dimension along resonant frequencies ranging from 6714.5 MHz to 12375.2

axial lengths were found to be within + 5 pm, which may MHz corresponding to vi= 2 to 14 were observed in the

be considered riegligible as compared with the systematic respective waveguides.

deformation. Dimensions of the sample waveguides are Fig. 6 shows the plot of the measured values of ~2 versus

listed in Table I, where the meanings of the maximum and v? together with the least-square regression lines, in which

minimum values of a and b are explained in Fig. 4. The only three typical examples are plotted to illustrate the

thickness of the 7-pm silver plating is ignored there. The linear relationship predicted by the theory.
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C. Evaluation of Waveguide Cross-Sectional Dimensions

Further investigation on the perturbational factors rl

and rz introduced in the theoretical dispersion formulas

will be made here. Calculation of these factors directly

from (7a) and (7b) necessitates the value of+, and, hence,

the value of waveguide aspect ratio b/a. The cross-sec-

tional dimensions of the sample waveguides, however, have

appreciable deviations from the specified values as listed in

Table I. Therefore, the ratios b/a have an ambiguity due to

the maximum and minimum values of a and b, especially

for the waveguides with twist angles of 270° or larger.

Thus, instead of simply adopting the measured dimensions,

we now present an alternative method for evaluating the

cross-sectional dimensions as follows. Considering the re-

sults obtained from the resonant frequency measurements,

we rewrite the formula (10) in the form

~’=pv:+q (11)

where p and q can be determined from the least-square

regression lines in Fig. 6. On the other hand, substitution

of (7a) and (7b) into (10) and comparison with (11) yield

the following simultaneous equations for @and a:

C2()
1

‘= m
(12a)

l- A;(@) .(~)2

()c
~l+A;(@). (;)2

‘= z
(12b)

l- A;(@) .(;)2”

Elimination of a from these equations gives a transcenden-

tal equation as shown as follows:

[A;(@)-(&-l)A,(+)](:~+;(*-l)=o.
(13)

Since p and q are already known, the value of ~ can be

determined as a solution of this equation, if we use the

measured values of 1 and a.

When @is evaluated, the values of a, and, hence, b, can

then be determined as follows:

a={* ‘14a)

in which a can be evaluated even when a = O, but @and b

become indeterminable when a = O. Hence, it follows that

the values of @ and b depend critically on the measured

values of p, q, and 1 for slightly twisted samples. This

means, in other words, that the method for evaluating the

cross-sectional dimensions proposed here is effective rather

for rapidly twisted samples.
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Fig. 7. Evaluated cross-sectional dimensions of the sample waveguides.
Ranges of the physical dimensions a and b are also shown for comparison.

The value of a and b evaluated from (14a) and (14b) are

to be compared with their physical dimensions in Table I.

The results will be discussed in the following section.

IV. RESULTS AND DISCUSSIONS

The expression of the guide wavelength derived by Lewin

[1, p. 79, eq. (44)] can be rearranged in comparison with
the relation (3) in Section II-A, and the expressions corre-

sponding to (5a) and (5b) are given as follows:

. ~ (2m2 + l)tanh(+~~)

~= Z,4, . . . (J7=i)’
(15a)

128 tan+ 256
Al~(@=-~@2+6+n2-T.~ –m

(15b)

where subscript L denotes the Lewin’s theory. The results

of the present theory are derived from the dominant
hybrid-mode fields, while those of the Lewin’s theory are

from the dominant TE-mode fields. The differences be-

tween them are mainly seen in the terms under the sign of

summation.

The values of b/a, a, and b obtained, respectively, from

(13), (14a), and (14b) are shown in Fig. 7 in comparison
with those from Lewin’s theory. The ranges of the physical
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Fig. 8. Plot of the relative increment of the cutoff frequency versus
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dimensions for a and b listed in Table I are also indicated

by vertical bars. Each value of a and b evaluated from the

present theory agrees well with the respective dimensions

within the range of variations. But, on the contrary, all of

the values from Lewin’s theory are out of the ranges in

Fig. 7.

By employing the value of b/a and a evaluated from the

present theory, the dispersion characteristics of the respec-

tive waveguides can be expressed numerically by introduc-

ing them into the formulas (6a)–(6d). As an example, a

relative increment in the cutoff frequency plotted versus

square of the degree of twist is shown in Fig. 8. The solid

line indicates the results of the present theory calculated

from (6d) together with (5). The dotted line indicates the

Lewin’s theory calculated from (6d) together with (15)

instead of (5). Both results are obtained by introducing the

same value of @ evaluated from the present theory for the

respective samples. Discrepancies between these two are

solely caused by the differences between (5) and (15).

V. CONCLUSIONS

The dispersion formulas (6a)–(6d) for the twisted rectan-

gular waveguides have been obtained on the basis of the

energy relation in the dominant hybrid-mode fields. By

examining the two perturbational factors in the formulas,

the concepts of equivalent guide width and equivalent path

length have been derived. It is found that the effects of the

twist are equivalent to the contraction in the guide width

and the elongation in the path length. As a result, the

cutoff frequency becomes higher with the increasing angle

of the twisting. Hence, the guide wavelength increases in

the low-frequency region near cutoff. But, in higher fre-

quencies far beyond cutoff, it decreases and becomes

shorter than that of the straight waveguide. The effects of

the twist are explained more intuitively with the aid of the

diagrams as shown in Fig. 2.

By using a set of twisted waveguides, experimental inves-

tigations have been carried out to corroborate the theoreti-

cal dispersion formulas. Equations (13), (14a), and (14b)

have been derived as useful relations for evaluating the

cross-sectional dimensions of the twisted waveguides. Com-

parison of the evaluated dimensions with their physical

ones reveals that the results of the present theory are more

realistic than those of the Lewin’s theory.

The strict expressions of the phase constants obtained in

this paper can be utilized for the design of practical

waveguide twists,

APPENDIX

DERIVATION OF (4)

By substituting (2) into (l), the integrands in each side of

(1) can be expressed as

aqp aop _ Zx am$) aop
—.—

‘2Y ax “ ay ax ax

(
aqp

+a’yx2+y2) ~

E.E*++012

(
2

+ ~’2 pjl) 2+ if):) + q)

+ X2 @$)2–zjyq)qv
)

a~:) 2 aql) aqfy
— .—

+ ax ‘2 ay ax
)

2

in which the terms of a and a3 are found to vanish.

The scalar functions of the form Q(o) and @@Jhave been

found [2] to be

@~) = sin d

I

c~cosm8

(m2-1)2
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where

,=:(x+;), +=;(Y+:)

~b

{

1 (form= O)

@=z ’ c“= 2 (form #O)”

(A2)

On substituting (A2) and (3) into (Al), each integrand in

(Al) is expressed in terms of the variables X, Y, and the

unknown constant A‘, together with the remaining con-

stants. After integrating (1) and neglecting the terms of a4,

we get (4) of the text.
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